

EMTP-RV use at EPRI for Open Phase Analysis

EMPT-RV/Powersys Meeting July 10, 2015

Introduction – EPRI Research

- EPRI has developed and is further developing application guides for EMTP-RV
 - (2011) Application Guide for Determining Maximum Switching Transient Overvoltages of Overhead Lines Rated 100 kV and Above Using Electromagnetic Transients Program (EMTP)
 - (2015) Application Guide for Determining Line T-Values used for Minimum Approach Distances Using Electromagnetic Transients Program (EMTP)
 - (2015) Application Guide for performing Open Phase Analysis Using Electromagnetic Transients Program (EMTP)

Introduction – EPRI Research

- Address many of the technical issues associated with detecting an openphase condition of a station auxiliary transformer (SAT)
 - Studied several types of transformer types

Released <u>4</u> publicly available documents on the open-phase issue since 2012 that used EMTP-RV.

Open Phase Modeling Inputs

Transformer model

- Knowledge of transformer type
 - Windings
 - Core Configuration
- Motor Modeling
 - Starting characteristics

EMTP-RV results verified with alternative software.

Problem Description

 Transformers with wye-grounded connected primaries that have a zero-sequence impedance path i.e. secondary/tertiary delta or 3-legged core

Problem Transformers (No Load)

Identified which transformer types exhibited this issue

Phase A opened on high side

	Prim	nary Voltage (pu)		Secondary Voltage (pu)		
	Phase A	Phase B	Phase C	Phase A	Phase B	Phase C
Wye-Wye	0	1.0	1.0	0	1.0	1.0
(Shell Core)	0	1.0	1.0		1.0	1.0
Wye-Wye						
(3-Single Phase	0	1.0	1.0	0	1.0	1.0
Cores)						
Wye-Wye*	0.54	1.0	1.0	0.54	1.0	1.0
(5-Legged Core)	0.54	1.0	1.0	0.34	1.0	1.0
Delta-Wye	0.5	1.0	1.0	0.5	1.0	0.5
(3-Legged Core)	0.3	1.0	1.0	0.5	1.0	0.5
Wye-Delta	1.0	1.0	1.0	1.0	1.0	1.0
(3-Legged Core)	1.0	1.0	1.0	1.0	1.0	1.0
Wye-Wye	1.0	1.0	1.0	1.0	1.0	1.0
(3-Legged Core)	1.0	1.0	1.0	1.0	1.0	1.0
Wye-Delta-Wye						
(Shell Core with	1.0	1.0	1.0	1.0	1.0	1.0
Buried Delta)						

Motor Modeling Examples

- Simulations were performed using EMTP-RV to determine if the 6000 HP Reactor Coolant Pump 1A motor could be started with an open phase on the high side of the station auxiliary transformer.
- Motor parameters were estimated using available nameplate data.
- Motor was started "across the line" with and without additional motors being connected to Bus 1A.

Calculated Acceleration Times

ELECTRIC POWER RESEARCH INSTITUTE

9

Load Model

Pump Load Torque Curve

Model Validation

EMTP-RV Model Used for Model Validation

Model Validation (Start at 100% Voltage - 4 kV)

Model Validation (Start at 80% Voltage – 3.2 kV)

LECTRIC POWE

RESEARCH INSTITUTE

13

System Model

- Detailed time-domain model of system was constructed using EMTP-RV.
- Motor starting simulations were performed with and without open phase and with and without additional motors connected to Bus 1A.

Motor Start (Normal Conditions – No Other Motors Connected to Bus 1A)

RESEARCH INSTITUTE

Motor Start (Normal Conditions – Motors Connected to Bus 1A)

Motor Start (With Open Phase – No Other Motors Connected to Bus 1A)

SZUTO Electric FOWER Research institute, inc. All rights reserved.

Motor Start (With Open Phase – Motors Connected to Bus 1A)

© 2015 Electric Power Research Institute, Inc. All rights reserved.

RESEARCH INSTITUTE

Conclusions

- The parameters of the EMTP-RV motor model were estimated using available nameplate data.
- The response of the model was compared to simulation results provided by the manufacturer. A reasonable comparison was obtained using the proposed model.
- Simulation results (with and without additional motor load) indicate that Reactor Coolant Pump 1A can <u>not</u> be started when an open phase condition occurs on the primary side of the station auxiliary transformer.
 - Additional motors connected to Bus 1A causes additional voltage drop at motor terminals resulting in reduced starting torque compared with the case where no motors are connected to Bus 1A.

Fault Placement

Open-Phase A on Secondary on Winding Y

Light-Load Case – Bus 1-F

Open-Phase A on Secondary on Winding Y

Heavy-Load Case – Bus 1-F

Open-Phase A on Secondary on Winding Y

Double Open-Phase Analysis

- Transformer Core/Winding Configurations
 - The goal of this research was to understand if detecting a double open-phase condition of a station auxiliary transformer would be affected by its connection and/or core configuration.
 - For use in the analysis and determining, in general, the response of the system(s) during a double open-phase event.

No-Load Conditions

- No-load conditions, both primary and secondary exhibit low voltage conditions.
- Unable to start 3-phase induction motors.

	Primary Li	ry Line-Ground Voltage (pu)		Secondary Line-Ground Voltage (pu)		
Wye-Wye (Shell Core)	0	0	1	0	0	1
Wye-Wye (5-Legged Core)	0	0.44	1	0	0.44	1
Delta-Wye (3-Single Phase Cores)	1	1	1	0	0	0
Wye-Wye (3-Legged Core)	0.5	0.5	0.99	0.86	0	0.86
Wye-Delta (3-Single Phase Cores)	0.5	0.5	0.99	0.86	0	0.86
Wye-Wye (Shell Core with Buried Delta)	0.5	0.5	0.99	0.86	0	0.86

Light Load (<10% Transformer Rating)

Delta – Grounded Wye (230kV:4.16kV 25 MVA)
Motors stop spinning

	V ₁	V ₀	V ₂
Primary (H)	0 pu	0.99 pu	0 pu
Secondary (X)	0 pu	0 pu	0 pu

RESEARCH INSTITUTE

Light Load (<10% Transformer Rating)

- Shell Core, Grounded Wye Grounded Wye (230kV:4.16kV 25 MVA)
- Motors stop spinning

Va_Sec@control

55.74 55.75

55.76 55.77

55.78 55.79 55.8

55.7314

55.83 55.84

ELECTRIC POWER RESEARCH INSTITUTE

55.81 55.82

Light Load (<10% Transformer Rating)

- 3-Single Phase Cores, Grounded Wye Delta Primary LG Voltage (After Open) (230kV:4.16kV 25 MVA)
- Motors keeps spinning

Sequence Voltages

to=10sec

Van =0.92pu∠ -15°

Vbn =0.84pu∠-121° Vcn =1pu ∠120°

25 Arms

Sequence Currents

Primary (H)

Secondary (X)

	\mathbf{V}_1	V ₀	V ₂
Primary (H)	0.91 pu	0.01 pu	0.09 pu
Secondary (X)	0.91 pu	0 pu	0.08 pu

0 Arms

 $I_0(A)$

83

0

8.3

457

0 Arms

25 Arms

 $I_1(A)$

8.3

453

to= 10sec

© 2015 Electric Power Research Institute, Inc. All rights reserved.

0

101

General Conclusions

- No-load conditions result in low voltage conditions
- Transformers that exhibit the issues with a double openphase are the same transformers that exhibit the issues with a single open-phase.
 - Voltage distortion becomes greater with larger loads.
- Conventional voltage relaying can be used for other transformer configurations

Other Work Conducted at EPRI

- Performed switching studies in response to OSHA's mandate on maximum switching transient values (T-levels)
- Scope
 - Identify critical parameters that drive voltage magnitudes
 - Conduct sensitivity analysis across critical parameters
 - Develop technical basis for categorizing lines by T-values

Scripted in EMTP-RV multiple variable perturbations >150k simulations run.

RESEARCH INSTITUTE

29

Other Work Conducted at EPRI

- Switching studies
- Ferroresonance
- Lightning / Insulation
 Coordination
- Control Circuits
- System Imbalance
- Motor Starting
- Electrical cars
- Distributed
 Generation

Etc.

Together...Shaping the Future of Electricity

